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ABSTRACT
We show that any spectrally dominant vector norm on matrices which 1is
invariant under isometries, dominates the numerical radius, r(¢). Thus, the
celebrated Lax-Wendroff stability condition, r(e) < 1, [4], defines a maximal

isometrically invariant stable set.
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l. Introduction

The study of many iterative procedures involves the question of uniform
power-boundedness of elements Iin a set F of nxXn complex valued matrices.
That is, one is interested in the existence of a constant K > 0 such that

for every matrix A e F
k
'A I <K, k = 1,2,...' (1.1)

Such a set F 1s called a stable set. Here |°¢| denotes a vector norm on
Mn'—~ the algebra of nxn complex valued matrices. It is customary to call
such norm a generalized matrix norm, to distinguish |¢]| from a matrix norm,
Nell, which 1in addition to being a vector norm on Mﬁ is also
submultiplicative, i.e., ITABI < NANIBI. We think, however, that the term
"generalized matrix norm" 1is confusing and we prefer to call the norm, |¢],
vector norm on matrices, or simply vector norm.

Since Mn is finite dimensional, all vector norms on Mn are equivalent
and hence the stability of F does not depend on the particular choice of a
vector norm. We would like to study stable sets. A complete characterization
of such sets was given by H. O. Kreiss in [3]; his conditions, however, are
hard to verify and whence difficult to apply. One tries, therefore, to

simplify Kreiss’ conditions by putting additonal assumptions on the stable set

F . A natural assumption which 1s fully justified in applications 1is

(1) F 1is a convex set.

Next, to simplify the problem in question, we shall suppose



(i) eieF =PF, d1.e., AceF 1ff eieAeF, for all real 8.

(i1i) F contains an open neighborhood of the zero matrix.

Finally we note that the power-boundedness (l.1) holds for any A 1in the

closure of F , so we may assume

(iv) F 1is a closed set.

We call a vector norm |*] a stable norm, if its unit ball is a stable
set. Assumptions (i)-(iv) imply, therefore, that F 1is the unit ball of some

stable norm, |°¢],

F=1{a] |a] <1}. (1.2)

So, we may as well study stable norms. It easily follows that every A 1in a

stable set F , satisfies the von Neumann condition

p(A) < 1, (1.3)

p(A) denoting the spectral radius of A . Hence, taking PF to be in

particular the unit ball of a stable norm |e], we find for such a norm

p(A) < |A] for all AeMn. (1.4)

A vector norm |°| satisfying the above inequality is called spectrally

dominant, and we conclude that spectral dominance is necessary for a vector



norm to be stable. Thus we arrive at the following

Problem: Which spectrally dominant vector norms on Mh are stable?

Let (*,*) be a given inner product on ¢P- the space of n-~th column
complex vectors. Also, any AEMn defines a operator A : ¢n+¢n' in the

obvious way. The numerical radius of A 41s then defined by
r(A) = max|(Ax,x)/(x,x)|. (1.5)

It is well-known that r(¢) 1is a vector norm. In 1964 Lax and Wendroff [4]
showed for the Euclidian inner product (x,y) = y*x, that 1r(¢) 1is a stable

norm, i.e., that the set
A ] ray<} (1.6)

is a stable one; their proof proceeds by induction on the dimension n o 1In
fact, the numerical radius r(e) induced by a general inner product--
necessarily of the form (x,y) = y*Hx, H = T*T >0 =- 1is a stable norm as well
{6]. 1Indeed, its unit ball is similar to the set (1.6), with T Dbeing the
similarity transformation. The aim of this paper, is to show that the Lax-

Wendroff condition, r(e°)<l, 1is optimal in the following sense.

Main Theorem. Let FcM, be a stable set satisfying the assumptions

(1)-v). Assume furthermore that F is invariant under similarity by

isometries; that is




urU™! = F, for all U such that (Ux,Ux) = (x,x). (1.7)

Then F 1is contained in the set (l.6).

The above result implies

Corollary. Any spectrally dominant vector norm which is invariant under

similarity by isometries, is stable.

We close this section by an interesting conjecture of C. Johnson [2] (which is

stated there in an equivalent form)

Conjecture: Any spectrally dominant norm is stable.




2. Invariant Norms.

Lemma 1. Assume that the vector norm e is 1invariant wunder the

similarity by a matrix U ,

[UAU~Y] = |A]  for all AeM_. (2.1)

Then U 1is similar to a diagonal matrix A,

A = diag(A), .00 ), Iy I=Ingl, 1<d,3<n. (2.2)
Proof: Suppose first

Ux = A,x, Uty = ij, X,y # 0,

t

where U' 1s the transpose of U, For A = xy- we then have

UVAU™" = A N, A,

s0 Iki|=|Kj| by (2.1). It is left to show that U 4s similar to diagonal

matrix. Assume to the contrary that U is similar to an upper triangular

n
matrix V = (Vij)l

U = TVT with v

1=y =\, v,,=1.

22 12

Noting that A # 0, we choose

A = TBT ,



where the only non-zero entry of B = (bij)? is b,, = 272,
A straightforward calclation shows that the (1,2) entry of T'l(UkAU"k)T is
kz. The matrices UkAU.k are, therefore, not uniformly bounded. On the

other hand, (2.1) yields

[v%au™*] = [l

and in particular, the matrices UkAU_k, are uniformly bounded. The above
contradiction establishes the lemma.

By Lemma 1, the study of invariant norms 1is reduced to invariance under
diagonal matrices of the form (2.2). We continue by considering invariance
under such type of similarities.

For each A=(aij) let diag(A) denotes the diagonal matrix

diag(all,..., ann)' We have

Lemma 2. Let (K| be a vector norm on Mh, invariant under the

similarity by a diagonal matrix A = diag(xl,...,xn), |xi|=|xj|, 1<1,3i<n.

Assume that kii Aj for i#j. Then

[diag(A)| < |A[]. (2.3)

Proof: From the A- invariance it follows

1 9 .k, .k 1 ¢ .k, -k
) Y AAATT) < ey Y OJIATAATT) = ]Al.
k=0 k=0

Let Am denote the matrix on the left



o (m)y 1 Y ok, -k
A = (aij ) = __T£ZOA AATT,
We have
(Ki)m+1
(m) (m) 1 - "Aj
a = a,,, a = a for 1 # j.
11 i1 1j 1j (m+1)(1- ;ﬁ)

Let m*> and obtain (2.3).

Theorem 1. Let !¢| be a vector norm on M, invariant under similarity

by isometries; that is

[UAU™L| = |A], for all U such that (Ux,Ux) = (x,x). (2.4)

Then |*| 1s spectrally dominant if and only if |¢| dominates the numerical

radius (1.5)

r(A) < [A]. (2.5)

Proof. The numerical radius is a stable norm, hence the sufficiency of

(2.5) is obvious since

p(A) < r(A). (2.6)

We turn now to prove the necessity of (2.5). We consider first the Euclidean
inner product (x,y) = y*x; the corresponding numerical radius (1.5) is
denoted by rI(A), and the isometries in this case are unitary matrices.

They include 1in particular any diagonal matrix whose spectrum lies on the unit



circle. So we may apply Lemma 2 yielding (2.3). For A = (aij)? we have

p(diag(A)) = max |a

|
1<i<n 11

The assumption that |¢| 1is spectrally dominant therefore implies

max |a,,| = p(diag(A)) < |diag(A)] 2.7)
i1
1<i<n
which combined with (2.3) gives us
max |a,,] <€ |A]. (2.8)
1<i<n 1

Since p(°*) and |*| are both unitarily invariant, it follows that (2.8) holds

for any matrix unitarily similar A. Let V be a unitary matrix with first

*
columm x , x'x = 1. Employing (2.8) for V AV = (aij) we get
* *

|x Ax| = Ialll < |V AV|=]A].
Since for any x , x*x = 1, we can find a unitary V whose first column is
x, we conclude

*
rI(A) = max |x Ax] < |Al. (2.9)
*
x x=1

Consider now a general inner product (¢,*); it is necessarily of the

form

(x,y) = y Hx (2.10)



with a positive Hermitian H. For the corresponding numerical radius,

r(')ErH(°), it is straightforward to show
r(4) = rI(Hl/zAH_l/z). (2.11)

Let be another norm on M, given by

I+ 1y

“1/2,41/2,

|A|H= " (2.12)
Since the isometries in this case consist of matrices U such that
1/2,,~1/2
H"'“UH is unitary, we find on account of (2.4) that the new norm I-IH

is unitarily invariant; by (2.9) therefore

rI(B) < IBIH.

This inequality is equivalent to (2.5) in view of (2.11)-(2.12). The proof of
the theorem is completed.

We note that in the course of proving necessity in the last theorem, we
did not use but the spectral dominance for diagonal matrices. When combined
with the wunitary 1invariance, however, it 1is equivalent to the spectral

dominance (1l.4), as easily seen by considering the Schur triangular form.

Proof of Main Theorem. Our assumptions imply that F is the unit ball

of some vector norm |°*| which necessairly satisfies (2.4). Since F is
stable, the norm |¢| 1is spectrally dominant. By Theorem 1, it dominates the
numerical radius as well; whence Tr(A)X|A|<1l and F 1s contained in the set

(1.6).
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3. An Open Problem.

Let |°*| be a unitarily invariant vector norm on Mn' For xs¢n denote

D(x) = diag(xl,...,xn) (3.1)

and then define a vector norm lel on ¢

Ixh = |D(x)]|. (3.2)

Since || 1is unitarily invariant, it follows

Pxt = lx! (3.3)

for all permutation matrices P; that {is Ixl 1is a symmetric norm. Vice
versa, if el 1is a norm on (™, we can define a unitarily invariant vector
norm |°¢| on Mn’ as follows

1

|A] = max]diag(UAU ")]. (3.4)

Uel
Here U stands for the set of all unitary matrices, and the norm on the right
is the norm of the n-tuple diagonal entries being viewed as a vector in ¢T.
The norm |°| 1s a minimal invariant in view of (2.3). Clearly |°¢| is
spectrally dominant 1ff

Ix} > max |x (3.5)

l.
1<i<n 1

In particular, let Hx"p be the Holder norm
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n
1xl = (§ Ix, |P)L/P, (3.6)
P oy 1

and denote by I'Ip the corresponding invariant norm given by (3.4). Since

I-Ip is stable we have the inequality

<K |A|§, K= 1,2,000 (3.7)

N
P Psn

|A
For p = ® equality sign holds in (3.5), we have IAlw= rI(A) and hence

K =1 (3.8)

as

rI(Ak) < rIk(A). (3.9)

This was the Halmos conjecture [l1]. See [5] for a short proof.

Problem. For which values of p , 1{p<», the constants K

pon  Are

uniformly bounded in n?
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